

Middleware Enabling Science in Distributed Systems

Deb Agarwal
Distributed Systems Department

Lawrence Berkeley National Laboratory

DSD Overview

- Collaborative Interaction Tools
- Grid middleware
- Security
- End-2-End Monitoring
- Transport mechanisms

DSD High-Level Goals

- Allow scientists to address complex and large-scale computing and data analysis problems beyond what is possible today
- Develop software components which will operate in a distributed environment
 - Middleware providing basic services and capabilities in the Grid
 - Applications and middleware supporting synchronous and asynchronous collaboration between geographically remote researchers

Pervasive Collaborative Computing Environment Goals

- Support 'continuous' collaboration
 - Ubiquitous available anywhere
 - Synchronous and asynchronous
 - Persistent
- Low threshold for entry into the environment
- Target daily tasks and base connectivity
- Leverage off of existing components
- Secure environment
- Scale to support small and large groups

PCCE – XMPP-based Secure Messaging

Collaborative Workflow

Abstract Workflow Job Manager

Scalable and Secure P2P Information Sharing

- Create a peer-to-peer system to support location independent information sharing in the scientific community
- Goals
 - Security (flexible)
 - Scalability (group communication)

GUI

Security

Goals

- Identify users authentication
- Define and enforce access control authorization
- Protect confidentiality of data encryption
- Define roles and levels of trust
- Easy to configure and use from any location

Tools

- Akenti authorization server
- Secure group layer
- Message level security
- Incremental trust

Akenti Goals

- Access based on policy statements made by multiple independent stakeholders
- Use Public Key Infrastructure (X.509) standards
 - To identify users
 - Create digitally signed certificates
 - Use TLS/GSI authenticated connections
- Targeted at distributed environments
 - Users, resources, stakeholders are geographically and administratively distributed

Akenti Policy

- Minimal local authorization policy files:
 - Who to trust, where to look for certificates.
- Most access control policy contained in distributed digitally signed certificates:
 - X.509 certificates for user identity and authentication
 - UseCondition certificates containing stakeholder policy
 - Attribute certificates in which a trusted party attests that a user possesses some attribute, e.g. training, group membership

Python CoG Kit

- Provide a <u>mapping</u> between Python and the Globus Toolkit®.
 - Clean object-oriented interface
 - Similar performance to the underlying C code
 - Stability between versions of the Globus toolkit
 - Natural to use interface
- Available for Globus 2.2.4 or 2.4
- Distributed as part of the Globus 3.2 release

Grid Services Project

- Develop Open Grid Services
 Architecture implementation in Python
 - Grid Services Specifications
 - Open Grid Services Infrastructure
 - Standalone implementation in python
 - Both client and server side
 - Higher-level Services
 - Application-specific services and infrastructure
- Recent WS-RF changes will be tracked

DOE Science Grid

- Support DOE's large scale science projects by providing cyber infrastructure that is persistent, scalable, and community standardsbased
 - LBNL, ANL, ORNL, and PNNL
 - NERSC
 - Provide needed tools
 - Perform outreach to applications
 - Reduce barriers to use

End-2-End Monitoring

- Improve end-to-end data throughput for data intensive applications
- Provide the ability to do performance analysis and fault detection
- Provide accurate, detailed, and adaptive monitoring of all of distributed computing components, including the network
- This requires a unified view of a wide range of sensor data, from network to host to application

NetLogger Toolkit

- The NetLogger Toolkit includes:
 - Tools to make it easy for distributed applications to log interesting events at every critical point
 - NetLogger client library (C, C++, Java, Perl, Python)
 - Extremely light-weight: can generate > 900,000 events / second on current systems
 - Tools for host and network monitoring
 - Event visualization tools that allow one to correlate events
 - NetLogger event archive and retrieval tools
- NetLogger can provide a complete view of the entire system.

Detailed Application Instrumentation Example

Next I/O starts when processing ends

I/O followed by processing

overlapped I/O

almost a 2:1 speedup

Improving TCP Performance

- Goal improve performance on high bandwidth*delay product links
- TCP Tuning Guide
- Web100/Net100 instrumented TCP and WAD
- Simulate HighSpeed TCP (proposed by Sally Floyd)
 - Bulk transfer capabilities
 - Fairness
 - Response to active queue management

Communication Protocols to Support Collaboratories

- Scalability
 - High data throughput
 - Large numbers of users interacting
- Support for peer-to-peer communication
- Robust not dependent on servers

Group Communication

InterGroup + SGL

InterGroup Protocols

Goals

- Support a broad range of applications
 - Broadcast one-to-many
 - Many-to-many
- Provide a broad range of guarantees
 - Reliable and unreliable delivery
 - Sender order, total order, and unordered
- Based on IP Multicast
- Scale to the Internet
 - Many groups
 - Many members in each group
 - Heterogeneous latency between members

InterGroup Protocol

- All members of the group can send messages to the group
- All processes in the group receive the messages sent within the group
- Membership tracking with notification of membership changes
- Messages delivered at each member of the group in a consistent order
 - total order (timestamp)
 - preserve causality
 - membership changes ordered with respect to messages

InterGroup Schematic

The Secure Group Layer: SGL

- A group Diffie-Hellman key exchange algorithm enables group members to establish a session key
- Symmetric crypto algorithms (e.g. DES and HMAC)
 - implement a secure channel
- An access control mechanism makes sure that only the legitimate parties have access to the session key
 - certificate-based
 - password-based
- Provable security

Group Diffie-Hellman Algorithm

- Up-flow: U_i raises received values to the power of the values (x_i, α_i) and forwards to U_{i+1}
- Down-flow: $U_{\rm n}$ processes the last up-flow and

$$\alpha_l, x_l$$
 broadcasts

$$[g_1, g_1^{x_I}]_{pw}$$

$$[g_3^{x_2x_3}, g_3^{x_1x_3}]_{pw}$$

$$\alpha_2, x_2$$

$$[g_2^{x2}, g_2^{x1}, g_2^{x1}]_{pw}$$

 α_3, x_3

Self Configuring Network Monitor (SCNM)

- SCNM is a passive monitoring system designed to address the following issues:
 - Ability for network <u>users</u> to monitor their own traffic
 - Ability to identify the source of network congestion or other problems (e.g. a LAN or WAN issue)
 - Ability for application developers to characterize their own traffic, and how it is impacted by the network
 - Protocol analysis and debugging
 - Often not possible to capture packet traces at the sending host
 - tcpdump will often lose packets when trying to capture a high bandwidth stream

Step 5: Add Passive Monitoring "Inside" the Network

Typical Passive Header Capture Results

URL

http://www.dsd.lbl.gov/